
CHEMICAL TESTS

INORGANIC TESTS			
TEST FOR	TEST METHOD	OBSERVATIONS	TEST CHEMISTRY
hydrogen gas H ₂		squeaky pop! (might see condensation on test tube)	$2H_{2(g)} + O_{2(g)} = = > 2H_2O_{(l)} + energy!$
carbon dioxide gas CO ₂	limewater	milky white precipitate of calcium carbonate	$Ca(OH)_{2(aq)} + CO_{2(g)} = = > CaCO_{3(s)} + H_2O_{(I)}$
oxygen gas O ₂	glowing splint or spill	re-ignites it - flame	$C_{(in wood)} + \mathbf{O}_{2(g)} = > CO_{2(g)}$
Hydrogen chloride gas HCl, in water hydrochloric acid	(ii) drop of silver		(i) Strongly acid gas, (ii) in water forms chloride ions - hence precipitate with silver nitrate.
bromide HBr and	they are		as above - combination of acid and halide ion tests

dioxide	potassium dichromate(VI) paper	orange to green	the dichromate(VI) ion, $Cr_2O_7^{2-}_{(aq)}$ is reduced to the green $Cr^{3+}_{(aq)}$ ion
Ammonia gas NH₃	odour*, (i) red	(i) litmus turns blue, (ii) white clouds with HCl fumes.	(i) only common alkaline gas and (ii) forms fine ammonium chloride crystals with HCl (*volatile organic aliphatic amines give the same result, and smell more fishy)
gas Cl ₂	drop silver nitrate on the end of a glass rod	pungent green gas, (i) litmus turns red and then is bleached white, (ii) white precipitate	(i) non-metal, is acid in aqueous solution and a powerful oxidising agent, (ii) forms chloride ion in water
Iodine solid		(i) purple vapour, (ii) blue black colour with starch solution	
	no simple relatively unambiguous test	nasty brown gas	strong oxidising agent
2- 2-	anhydrous	blue, (ii) turns from	(i) blue hydrated copper(II) crystals or solution formed, (ii) hydrated cobalt ion formed [Co(H ₂ O) ₆] ²⁺
(or hydrogencarbonate HCO3 ⁻)	strong acid to the suspected carbonate - if	gas - turns limewater milky cloudy (see above CO ₂)	carbonate/hydrogencarbonate + acid ==> salt + water + carbon dioxide , then white precipitate with limewater.
Sulphate ion [sulphate(VI)] SO4 ²⁻	to a solution of the suspected sulphate add dilute hydrochloric acid and a few drops of barium chloride or nitrate solution	barium sulphate	Ba ²⁺ (aq) + SO ₄ ²⁻ (aq) ==> BaSO _{4(s)} any soluble barium salt + any soluble sulphate ==> barium sulphate
[sulphate(IV)] SO ₃ ²⁻	any gas evolved with fresh	choking sulphur dioxide gas formed, (ii) the dichromate	(i) sulphite salt + hydrochloric acid ==> chloride salt + sulphur dioxide, (ii) the sulphur dioxide reduces the dichromate(VI) to chromium(III). Note: sulphites do not give ppt. with acidified barium chloride/nitrate because sulphites dissolve in acids.

	dichromate(VI)		
	paper		
Sulphid e ion	(i) If soluble, add a few drops lead(II) ethanoate solution.	sulphide.	(i) $Pb^{2+}_{(aq)} + S^{2-}_{(aq)} => PbS_{(s)}$ (ii) $MS_{(s)} + 2H^{+}_{(aq)} => M^{2+}_{(aq)} + H_2S_{(q)}$ (e.g. M =
S²⁻ for (ii) dangerous hydrogen sulphide formed	(ii) If solid, add dil. HCl(aq) acid, test	(ii) Rotten egg smell	Pb, Fe, Cu, Ni etc.) Then reaction (i) above occurs.
Chloride ion	(i) if soluble, add		(i) $Ag^{+}_{(aq)} + Cl^{-}_{(aq)} = = > AgCl_{(s)}$, any soluble
CI	conc. sulphuric acid, warm if necessary then <u>test gas as for HCl</u> <u>above</u> .	of silver chloride soluble in dilute ammonia, (ii) get fumes of hydrogen chloride which turn blue litmus red and give a white precipitate with silver nitrate solution	silver salt + any soluble chloride ==> silver chloride precipitate, (ii) $CI_{(s)} + H_2SO_{4(l)} ==>$ $HSO_{4(s)} + HCl_{(q)}$, then $Ag^+_{(aq)} + CI^{(aq)} ==>$ $AgCl_{(s)}$
Bromide ion	(i) if soluble, add dilute nitric acid		(i) Ag ⁺ _(aq) + Br ⁻ _(aq) ==> AgBr _(s) any soluble silver salt + any soluble bromide ==> silver
Br ⁻	and silver nitrate solution, (ii) if insoluble salt, add conc. sulphuric	bromide, only soluble	bromide precipitate, (ii) bromide ion is oxidised to bromine and the sulphuric acid is reduced to sulphur dioxide
Iodide ion I ⁻	sulphuric acid, (ii) get purple fumes	iodide insoluble in concentrated	(i) $Ag^{+}_{(aq)} + \mathbf{I}^{-}_{(aq)} ==> AgI_{(s)}$, any soluble silver salt + any soluble iodide ==> silver iodide precipitate, (ii) iodide ion is oxidised to iodine and the sulphuric acid is reduced to hydrogen sulphide, (iii) insoluble lead(II) iodide formed, $Pb^{2+}_{(aq)} + 2I^{-}_{(aq)} ==> PbI_{2(s)}$
	and fine aluminium powder (Devarda's Alloy)	which turns red litmus blue, <u>see ammonia</u>	 (i) the aluminium powder is a powerful reducing agent and converts the nitrate ion, NO₃⁻, into ammonia gas, NH₃ (ii) NO complex of iron(II) formed

Nitrite ion [or nitrate(III)] NO2 ⁻	sulphate solution and then conc. sulphuric acid (the 'brown ring' test) No simple test, (i) decolourises (purple	e ==> colourless) acidif	mposes to give nasty brown fumes of NO ₂ , (ii) it fied potassium manganate(VII), (iii) it liberates tion, (iv) forms ammonia with hot Al
Ammonium ion NH4 ⁺	powder/NaOH _(aq) ar no smell at first, add COLD sodium hydroxide solution to the suspected ammonium salt and test any gas with red litmus	ad gives 'brown ring' tes smelly ammonia evolved! and red litmus turns blue	at - <u>see nitrate tests</u> above. ammonia gas is evolved: $NH_4^+_{(aq)} + OH_{(aq)}^- ==> NH_{3(g)} + H_2O_{(I)}$
Hydrogen ion ie acids! H^+ or H_3O^+ (note: to completely identify acids you need to test for the anion eg chloride for HCl etc.)	universal indicator or pH meter, (ii) add a little sodium hydrogencarbonate powder	variety of colours with univ. ind. strong - red, weak - yellow/orange,	(i) pH meter gives a value of less than 7, the lower the pH number the stronger the acid, the higher the H ⁺ concentration, (ii) $HCO_{3(aq)} + H^{+}_{(aq)}$ ==> $H_2O_{(1)} + CO_{2(g)}$
Hydroxide ion ie an alkali OH ⁻ (note: to completely identify alkalis you need to test for the cation eg sodium for NaOH etc.)	(i) litmus or universal indicator or pH meter, (ii) add ammonium salt	variety of colours univ. ind. dark green -	(i) pH meter gives a value of more than 7, the higher the pH number the stronger the alkali, the higher the OH ⁻ concentration, (ii) ammonia gas is evolved: $NH_4^+_{(aq)} + OH^{(aq)} = > NH_{3(g)} + H_2O_{(I)}$
Positive metal cations via flame tests (see below for NaOH and NH ₃ for metal ion tests too)	other compound is mixed with concentrated hydrochloric acid and a sample of the mixture is heated strongly in a bunsen flame on	lithium Li ⁺ crimson sodium Na ⁺ yellow potassium K ⁺ lilac calcium Ca ²⁺ brick red	All colours are due to electronic excitation to a higher level. You see the light emitted as the electron returns to its lower more stable level. This is the basis of atomic emission and absorption spectroscopy. Aluminium, magnesium, iron and zinc do not produce a useful identifying flame colour.
Positive metal cations via sodium hydroxide (NaOH)	Dilute sodium hydroxide	 The ppt. is not solub 	$_{a_1}$ + 3OH ⁻ _(aq) ==> AI(OH) _{3(s)} white precipitate ble in excess of the weak alkali ammonia, but alkali sodium hydroxide: AI(OH) _{3(s)} + 3OH ⁻ _(aq) nphoteric behaviour)

Or ammonia (NH ₃) solutions (both alkalis, giving hydroxide ions, OH ⁻ , in their solutions)	suspected ion. Both the precipitate formed and the effect of excess alkali are important observations. All precipitates white, unless otherwise stated and all tend to be gelatinous in nature. The test can be repeated with aqueous ammonia solution (sometimes wrongly called 'ammonium hydroxide'). The observations are usually, but not always, similar.	calcium ion: $Ca^{2+}_{(ac)} + 2OH^{-}_{(ac)} ==> Ca(OH)_{2(s)}$ white ppt. * The ppt. is not soluble in excess of NH ₃ or NaOH. magnesium ion: $Mg^{2+}_{(ac)} + 2OH^{-}_{(ac)} ==> Mg(OH)_{2(s)}$ white ppt. * The ppt. is not soluble in excess of NH ₃ or NaOH. You could distinguish Mg from Ca with a flame test. copper(II) ion: $Cu^{2+}_{(ac)} + 2OH^{-}_{(ac)} ==> Cu(OH)_{2(s)}$ ***blue/turquoise ppt this does dissolve in excess ammonia to give a deep blue solution. iron(II) ion: $Fe^{2+}_{(ac)} + 2OH^{-}_{(ac)} ==> Fe(OH)_{2(s)}$ dark green ppt.* The ppt. is not soluble in excess of NH ₃ or NaOH. iron(III) ion: $Fe^{3+}_{(ac)} + 3OH^{-}_{(ac)} ==> Fe(OH)_{3(s)}$ brown ppt.* The ppt. is not soluble in excess of NH ₃ or NaOH. zinc ion: $Zn^{2+}_{(ac)} + 2OH^{-}_{(ac)} ==> Zn(OH)_{2(s)}$ white ppt. The ppt. dissolves in both excess sodium hydroxide or ammonia to give a clear colourless solution.
MISCELLANEOUS CATION TESTS: (i) Lead(II) ion	(i) add potassium iodide solution => yellow precipitate	(i) $Pb^{2+}(aq) + 2I^{-}(aq) = = >PbI_{2(s)}$ lead(II) iodide ppt.
Metal Carbonates	a metal carbonate strongly to decompose it provides some clues to its identity. Adding acid => CO_2 and the colour of the resulting solution (eg blue $Cu^{2+}_{(aq)}$, may also provide	copper(II) carbonate==> copper(II) oxide + carbon dioxide: $CuCO_{3(s)}$ ==> $CuO_{(s)} + CO_{2(q)}$ [green] ==> [black] + [colourless gas, test with limewater, white precipitate] zinc carbonate==> zinc oxide + carbon dioxide $ZnCO_{3(s)} ==> ZnO_{(s)} + CO_{2(g)}$ [white] ==> [yellow hot, white cold] +[colourless gas, test with limewater, white precipitate]

	hydroxide precipitate with sodium hydroxide eg copper.		
ORGANIC TESTS			
TEST FOR	TEST METHOD	OBSERVATIONS	TEST CHEMISTRY
alkyne any other non-aromatic	through, or add liquid to, a solution of bromine in hexane or water	bromine, decolourises,	RC ⁼ CR + 2Br ₂ ==> Br₂RC-CRBr₂ R = H, alkyl or aryl

